
Efficient Simultaneous Simulation of Markov
Chains

Carsten Wächter1 and Alexander Keller2

1 Ulm University, Germany, carsten.waechter@uni-ulm.de
2 Ulm University, Germany, alexander.keller@uni-ulm.de

Summary. Markov chains can be simulated efficiently by either high-dimensional
low discrepancy point sets or by padding low dimensional point sets. Given an or-
der on the state space, both approaches can be improved by sorting the ensemble of
Markov chains. We analyze deterministic approaches resulting in algorithmic simpli-
fications and provide intuition when and why the sorting works. Then we discuss the
efficiency of different sorting strategies for the example of light transport simulation.

I spent an interesting evening recently with a grain of salt.

Shannon: A Mathematical Theory of Communication, 1948

1 Introduction

A Markov chain describes a memoryless stochastic process, where the transi-
tion probabilities do not depend on the history of the process. For example
Shannon modeled the English language by a Markov chain, where he com-
puted the relative frequencies of one word following another from an English
book. Using these transition probabilities he generated seemingly English sen-
tences. Many more evolution processes, like e.g. the Brownian motion or par-
ticle trajectories, can be described as Markov chains.

Properties of processes can be estimated by averaging the contributions of
multiple Markov chains. Instead of simulating each trajectory independently,
it has been found that simultaneously simulating Markov chains using corre-
lated samples and sorting the ensemble of states after each transition step can
notably improve convergence.

2 Simultaneous Simulation of Markov Chains

The idea of improving the simultaneous simulation of Markov chains with
quasi-Monte Carlo methods by an intermediate sorting step was originally

2 Carsten Wächter and Alexander Keller

introduced by Lécot in a series of papers dealing with the Boltzmann equation
[Léc89a, Léc89b, Léc91, LC98] and later on the heat equation [KL99]. This
idea was then used and refined for solving the heat equation on a grid by
Morokoff and Caflisch [MC93] and recently extended by L’Écuyer, Tuffin,
Demers et al. [LL02, LT04a, LT04b, DLT05, LLT05, LDT06, LLT06, HLL07,
LDT07] to incorporate randomized versions of the algorithm and splitting for
rare event simulation. Independent research, but in a way related to the above
approaches, was conducted by [BNN+98] in the field of computer graphics.

In the following we simplify the deterministic version of the scheme. For
the derivation we use the algorithm from [LT04b]. The results give practical
insight, when and why the scheme is superior to approaches without sorting
and how to implement it.

2.1 Analysis of a Deterministic Algorithm in One Dimension

The algorithm presented in [LT04b] simultaneously simulates Markov chains
on a discrete state space E with an initial distribution µ := (µi)i∈E and a
transition matrix P := (pi,j)i,j∈E . Using a (t, 2)-sequence (xi)i∈N0 in base b
[Nie92], N = bm chains are simulated in parallel, where Xn,l is the state of
chain l at time step n and N0 are the natural numbers including zero. Further
the algorithm requires that for m > t the N = bm subsequent components xi,1

form a (0,m, 1)-net in base b. As shown in [LT04b] the algorithm converges if

∀k ∈ E :
N−1∑
l=1

∣∣∣∣∣
k−1∑
n=1

pl+1,n −
k−1∑
n=1

pl,n

∣∣∣∣∣ ≤ 1 (1)

holds.

Simplification of the Algorithm

We now consider the Sobol’ sequence xl = (xl,1, xl,2) = (Φ2(l), ΦS(l)) ∈ [0, 1)2,
which is a (0, 2)-sequence in base b = 2 and fulfills the assumptions required
for the convergence condition to hold. For the definition of the original Sobol’
sequence see [Sob67], while a simple code example for (Φ2(l), ΦS(l)) is found
in [KK02b].

The simulation itself starts at time step n = 0 initializing state X0,bN ·xl,1c
for 0 ≤ l < N using xl,2 for the realization of µ. The algorithm then continues
by sorting the states (this will be discussed in detail in Section 3) and continues
the chains by computing Xn,bN ·x(l+n·N),1c using x(l+n·N),2 for 0 ≤ l < N to
realize transitions according to P . The index

σ(l) := bN · x(l+n·N),1c

for selecting the next state for transition in fact uses the van der Corput
sequence Φ2 in base 2, which is a (0, 1)-sequence and thus a sequence of

Efficient Simultaneous Simulation of Markov Chains 3

(0,m, 1)-nets [Nie92]. For example choosing m = 3 > t = 0 we have N =
23 = 8 and

(b8 · φ2(l + n · 8)c)7l=0 ≡ {0, 4, 2, 6, 1, 5, 3, 7}.

for n ∈ N0. Hence all indices used during the different timesteps n are in fact
identical for all m.

Assuming uniform probabilities pi,j = 1
|E| the convergence theorem still

applies, but more important, stable sorting does not change the state order.
It thus follows that in fact the index permutation can be chosen as identity
without touching the convergence conditions. The same applies for selecting
the initial states X0,l and it results the simplified, but equivalent algorithm

• n := 0
• initialize X0,l using xl,2 for 0 ≤ l < 2m

• loop
– sort state vector using a suitable order
– n := n + 1
– continue chain by computing Xn,l using ΦS(l + n · 2m) for 0 ≤ l < 2m

using only the second component of the (0, 2)-sequence xl.

When and Why it Works

The improved convergence of the scheme, which has been observed in many
applications (see the references at the beginning of Section 2), now must be
caused by the structure of the samples ΦS(l + n · 2m) used to realize the
transitions of Xn,l according to P . This can be understood by decomposing
the radical inverse (see also [Kel06])

ΦS(l + n · 2m) = ΦS(l) +
1

2m
ΦS(n),

which reveals an implicit stratification: ΦS(l) is an offset with spacing 1
2m

depending on the state number l, while the shift ΦS(n) is identical for all the
intervals at timestep n.

ΦS(l) 10

7→ 1
2m ΦS(n)

Here the low dimensional setting allows for a misleading interpretation of
the samples being a shifted lattice or stratified samples, as the entirety of
the ΦS(l) for l = 0, . . . , 2m − 1 in fact must be an (0,m, 1)-net and thus an
equidistant set of samples.

However, the good performance stems from the property that ΦS(l) is a
(t, s)-sequence and thus a sequence of (t, m′, s)-nets for any m′ with t ≤ m′ ≤
m. This means that bm′

states, that are similar in state space and therefore

4 Carsten Wächter and Alexander Keller

subsequent by order after sorting, will sample their transition by a (t, m′, s)-
net, which guarantees for good discrete density approximation. The maximum
improvement would be obtained if all 2m chains were in the same state. The
more the states of the chains are separated in state space, the smaller the
performance improvements will be.

2.2 Simplified Algorithm in s Dimensions

Using a (t, s)-sequence in base b, which is a sequence of (t, m, s)-nets, the
scheme also works in s dimensions: Markov chains, whose states are simi-
lar after sorting are guaranteed to sample the transition probability by low
discrepancy samples. The simplified algorithm in s dimensions now looks like:

• n := 0
• initialize X0,l using quasi-Monte Carlo points xl

• loop
– sort state vector using a suitable order
– n := n + 1
– continue chain by computing Xn,l using subsequent samples xl from a

(t, s)-sequence

Some simulations require trajectory splitting in order to capture certain lo-
cal subtle effects. While this already has been addressed in [DLT05, LDT06,
LDT07], it in fact can be achieved in a simpler way by just drawing more
samples out of the (t, s)-sequence for states to be split.

This is a consequence of the fact that it is not even necessary to simulta-
neously simulate exactly bm chains. It is only important to draw subsequent
samples from the (t, s)-sequence and to minimize the number bm of points in
the subsequent (t, m, s)-nets in order to enable the maximal performance gain.
The choice of the (t, s)-sequence, however, is restricted by the condition that
(0, s)-sequences only exist for b ≥ s and that m > t [Nie92]. Note that other
radical inversion based points sets like the Halton sequence or its scrambled
variants fulfill properties similar to (t, s)-sequences [Mat98] and will result in
similar performance gains.

2.3 Randomization

While there exists no general proof for convergence of the deterministic al-
gorithm in higher dimensions yet, the algorithm becomes unbiased by freshly
randomizing the quasi-Monte Carlo points in each time step n [LLT06]. Since
this is in fact an instance of padded replications sampling as introduced in
[KK02a, KK02b] the argument for unbiasedness becomes simpler than in
[LLT06]. Randomization, however, deserves special attention.

The most efficient implementation along the lines of [KK02b] consists of
choosing a (t, s)-sequence in base b = 2, from which subsequent samples are

Efficient Simultaneous Simulation of Markov Chains 5

drawn, which are XOR-ed by an s-dimensional random vector. This random vec-
tor is freshly drawn after each transition step. However, as random scrambling
changes the order in which the points are enumerated, the local properties of
the sequences of (t, m, s)-nets are changed, too.

This observation can be taken as an explanation for some of the effects
seen in [LLT05]: Sobol and Korobov points used in the array-(R)QMC sim-
ulation are worse up to an order of magnitude in variance reduction than
their transformed (Gray-code for Sobol, Baker transform for Korobov) coun-
terparts. The explanation for this is found in the structure of the points. The
sequence of (t, m, s)-nets extracted from the Sobol sequence is locally worse
than its Gray-code variant. The same goes for the Korobov lattice and its
transformed variant.

3 Sorting Strategies

In order to have the states as closely together as possible, they have to be
enumerated in an order such that the sum of the distances of neighboring
states is minimal. This in fact relates to the traveling salesman problem3,
where for a given set of cities and the costs of traveling from one city to
another city, the cheapest round trip is sought that visits each city exactly
once and then returns to the starting city.

Our problem is very similar except for it is not necessary to return from
the last state of the route to the first state. Some techniques are already
available to efficiently calculate approximate, but close to optimal, solutions
for the traveling salesman problem [DMC91, Rei94]. However, running times
of these algorithms are not acceptable in our simulations, as the calculation
of the distance matrix alone exhibits an O(N2) complexity, while we want
to keep the algorithm as close as possible to the O(N) complexity of classic
Monte Carlo methods.

In the following we discuss some possible orders to achieve fast sorting for
high-dimensional state spaces.

3.1 Norm of State

The average complexity of quicksort is O(N log N), but for certain scenar-
ios even O(N) algorithms exist, like e.g. radixsort, which, however, requires
additional temporary memory. In order to use these one-dimensional sorting
algorithms, the multi-dimensional state must be reduced to one dimension.
Amongst many choices often some norm ‖Xn,l‖ is used to define an order on
the state space. However, similar norms do not necessarily indicate proximity

3 This problem already was investigated by Euler in the early 18th century and
unfortunately can be shown to be NP-hard [Kar72]. For a historical survey on
the problem see Lawler et al. [LLKS85].

6 Carsten Wächter and Alexander Keller

in state space. A simple example for this is similar energy of particles in a
transport simulation that are located far away in space.

3.2 Spatial Hierarchy

Fig. 1. Sorting the states into the leafs of a spatial hierarchy defines an order of
proximity by traversing the hierarchy in in-order.

A second possibility to enable multidimensional sorting is the usage of
a spatial hierarchy to define an order on the states [Wie03]. Efficient data
structures for this purpose are the BSP-tree [SBGS69, Abr95], its special-
ized axis aligned subset, the kD-tree [Ben75], or bounding volume hierarchies
[RW80, KK86, WK06]. The construction of such binary hierarchies is simple:
The space is recursively subdivided using planes selected by some heuristic
[WK07]. The construction runs in O(N log N) on the average. Traversing the
hierarchy in in-order enumerates the leaves in an order of proximity. This
traversal becomes trivial, if the tree is left-balanced and in consequence can
be stored in an array.

If a spatial hierarchy must be used anyway, for example to accelerate
ray tracing, there is no additional construction time for the hierarchy. The
particles then are stored as linked lists attached to the leaves of the hierarchy
(see Figure 1). Unfortunately the quality of this order is strongly determined
by the quality of the spatial hierarchy used for simulation, which is especially
problematic if the number of leafs in the hierarchy is much smaller than the
number of chains N as this results in several states being mapped to the same
leaf.

3.3 Bucket Sorting and Space Filling Curves

In order to guarantee linear time complexity, bucket sorting can be used. In the
s-dimensional extension [HLL07] of the simple algorithm sketched in Section
2.1, multidimensional states were sorted into buckets by the first dimension
of the state, then the states of each bucket were sorted into buckets according
to the second dimension, and so forth. This procedure works well, but has
the problem that states close in state space can be separated by the sorting

Efficient Simultaneous Simulation of Markov Chains 7

procedure. In addition, a stratification of each dimension has to be used, which
induces the curse of dimension in the number of Markov chains to be simulated
simultaneously.

We therefore divide the state space into equal voxels, which serve as buck-
ets. The bucket of each state is found by truncating the state coordinates
according to the resolution of the voxel grid. Note that this applies for con-
tinuous as well as discrete state spaces. Enumerating the voxels by proximity
yields the desired order on the states and can be done in linear time in the
number of voxels.

Orders that enumerate the voxels by proximity are given by space filling
curves [Sag94] like e.g. the Peano curve, Hilbert curve, or H-indexing. These
curves guarantee every voxel to be visited exactly once and an overall path
length being relatively short. For problems with large geometry, which is the
case in our own simulations, this can be even one of the few possibilities
to generate fast and memory efficient approximate solutions to the traveling
salesman problem [Rei94]. However, these curves are rather costly to evaluate,
need to be tabulated to be efficient, or are not available for higher dimensions.

Fortunately, the Z-curve, also known as Lebesgue-curve or Morton order,
avoids these problems. Given integer coordinates of a bucket in multidimen-
sional space, its one dimensional Z-curve index is simply calculated by bitwise
interleaving the coordinate values (see Figure 2). This is very easy and fast
to compute for any dimension and problem size, and requires no additional
memory. Unfortunately the results are not as good as for example the Hilbert-
curve in a global context. However, the average case partitioning quality and
average/worst case logarithmic index ranges are comparably good [Wie03].
Problems can arise in highly symmetrical scenes like Shirley’s ”Scene 6” (see
Figure 6) used for our numerical experiments: States on the walls parallel to
the (x, y)-plane will be sorted very well, but the states located on the other two
walls parallel to the (y, z)-plane will be visited by the curve in an alternating
manner, which can lead to correlation artifacts in some scenarios.

Fig. 2. The Z-curve in two dimensions for 2×2, 4×4, and 16×16 buckets. With the
origin (0, 0) top left the point marked by × has the integer coordinates (3, 4), which
corresponds to (011, 100)2 in the binary system. Its binary Z-curve index 1001012 is
computed by bitwise interleaving the binary coordinates.

8 Carsten Wächter and Alexander Keller

Fig. 3. Sampling transport path space by bidirectional path tracing. Trajectories
from the eye and the light sources are generated by Markov chains and connected
to determine the transported amount of light.

4 Application to Light Transport Simulation

For numerical evidence, we apply the algorithm developed in the previous
sections to light transport simulation for synthesizing realistic images. The
underlying integral equation can be reformulated as a path integral [Vea97].
Sampling path space (see Figure 3) corresponds to simulating Markov chains,
where the paths are established by ray tracing and scattering events. The
initial distribution is determined by the emission characteristics of the light
sources and the transition probabilities are given by bidirectional reflectance
distribution functions on the surface.

To solve the path integral, one can think of two basic strategies, which are
either using high dimensional low discrepancy points or padding low dimen-
sional low discrepancy points [KK02b]. The latter approach fits our findings
in Section 2.2, where high dimensional events are composed as subsequent
transitions of a Markov chain. As measured in [KK02a] the difference to using
high dimensional sequences for Markov chain simulations is small to none, but
using padded sequences is computationally faster and requires less implemen-
tation effort. It is also simpler for practitioners in rendering industry.

In addition the low dimensional approach allows for much better results,
because the stratification properties of (t, s)-sequences or the Halton sequence
and its scrambled variants are much better for small dimensions (see Section
2.2).

Efficient Simultaneous Simulation of Markov Chains 9

Fig. 4. Photon trajectories are started from the light sources. Upon hitting a surface
after tracing a ray, the bidirectional reflectance distribution function is sampled to
determine a direction of scattering to continue the path.

4.1 Fredholm or Volterra?

The integral equation underlying light transport can be considered either as
a Fredholm or Volterra integral equation, which matters for implementation.

Lr(x, ω) =
∫

S2
−(x)

fr(ωi, x, ω)L(x, ωi) (n(x) · ωi)dωi

is the radiance reflected off a surface in point x in direction ω, where the
domain S2

−(x) of the integral operator is the hemisphere aligned to the normal
n(x) in x (see the illustration in Figure 4). fr is the bidirectional reflectance
distribution function describing the optical surface properties and L is the
incident radiance. Using this integral operator results in a Volterra integral
equation of the second kind, as the integration domain depends on x.

Lr(x, ω) =
∫

S2
fr(ωi, x, ω)L(x, ωi) max{n(x) · ωi, 0}dωi

on the other hand results in a Fredholm integral equation of the second kind,
as we are integrating over all directions of the unit sphere S2 independent of
x.

Using the latter approach of generating global directions [SKFNC97] and
rejecting directions with negative scalar product with respect to the surface
normal n(x) is computationally attractive, while the first approach requires
to generate directions in the hemisphere that have to be transformed into the
local surface frame, which is more expensive. Mappings from the unit square
to S2 or S2

−(x) are found in [SC94, Rus98, Shi00].
An even more important argument for generating global directions is re-

lated to our algorithmic approach (see Section 2.2): By sorting it can happen
that two close by surface points with different surface normals (e.g. in a corner)
use subsequent samples of a (t, s)-sequence to generate scattering directions.
Generating global directions now works fine, whereas generating directions in
the two different local frames using subsequent samples will destroy the low
discrepancy properties. These discontinuities become clearly visible. Using
global directions, however, does not allow for importance sampling according
to fr or the cosine term, which often is a disadvantage and deserves further
investigation.

10 Carsten Wächter and Alexander Keller

MC RQMC RQMCS

Fig. 5. Visual comparison for the test scene ”Invisible Date” using 300 chains for
simulation. The only lightsource is not visible as it is placed on the ceiling of the
neighboring room. Due to the better distribution of the photons randomized quasi-
Monte Carlo (RQMC) outperforms Monte Carlo (MC) visually, as can be seen by
the reduced shadow artifacts. RQMC with sorting (RQMCS, using 2563 voxels for
the bucket sort) is even superior as more photons made it into the second room and
even the back of the door is lit very well.

4.2 Numerical Evidence

Following the arguments in Sections 2.2 and 2.3, we use the Halton sequence
with permutations by Faure [Kel06] randomized by a Cranley-Patterson-
rotation [CP76] in order to have unbiased error estimates. For the sorting
the Z-curve order (see Section 3.3) worked best in our setting and was used
for the following experiments. We further note that we numerically verified
that omitting the randomization has no notable effect on the precision of
the results. In our numerical experiments we compared four approaches to
simulate Markov chains:

MC: Uniform random numbers generated by the Mersenne Twister [SM07]
were used for classical Monte Carlo sampling.

RQMC: Used the high-dimensional Halton sequence with permutations by
Faure randomized by a Cranley-Patterson rotation, where pairs of com-
ponents were used to sample the two dimensional emission and scattering
events.

lo-dim RQMCS: Used the two-dimensional Halton sequence randomized by
a Cranley-Patterson rotation. The Z-curve was used to enumerate the
bucket-sorted states.

hi-dim RQMCS: Used the high-dimensional Halton sequence with permu-
tations by Faure randomized by a Cranley-Patterson rotation. The Z-curve
was used to enumerate the bucket-sorted states.

In a first experiment the robust global illumination algorithm [KK04,
Kol04] was used to compute the path integrals. The resulting graphs are de-
picted in Figure 6 and display the RMS error to a master solution and the
variance averaged over the whole image as well as the pixel-based variance.
The numbers were obtained by averaging 10 independent runs for a varying

Efficient Simultaneous Simulation of Markov Chains 11

number of Markov chains. The measured numbers only convince for the sim-
ple test scene. In the complicated cases even no performance gain over Monte
Carlo sampling can be measured, because the number of independent runs is
too small and more experiments were not possible due to excessive running
times. However, the visual error tells a dramatically different story as can be
seen in Figure 5, where a clear superiority of the new algorithm in even very
difficult settings becomes obvious. This case is not an exception, but can be
observed for many test cases. It only emphasizes that standard error measures
are not appropriate error measures for visual quality, which is a known but
unsolved problem in computer graphics.

Figure 7 shows measurements for a very difficult light transport problem,
where we directly traced photons from the light sources and connected their
final path segment to the camera (one technique of bidirectional path tracing
[Vea97]). Opposite to the above measurements only one number of simulta-
neously simulated Markov chains is considered. Now a sufficient amount of
experiments was computationally feasible and the superiority of the new al-
gorithm became clearly visible.

5 Conclusion

We successfully simplified the algorithms to simultaneously simulate Markov
chains and provided intuition when and why sorting the states can improve
convergence. In addition the algorithm no longer is bounded by the curse of
dimension and there is no restriction to homogenous Markov chains, because
the simulation just can use transition probabilities P ≡ Pn that can change
over time.

Our experiments also revealed that not all (t, s)-sequences or radical in-
version based points sequences are equally good. This deserves further char-
acterization.

The algorithm would be even simpler, if rank-1 lattice sequences could
be applied. The constructions so far, however, lack the properties of (t, s)-
sequences that are required for the improved performance. In the future we will
investigate whether it is possible to construct suitable rank-1 lattice sequences.

As we are using global directions, i.e. integrate over products of spheres, it
is also interesting to establish connections to recent research in that direction
[KS05].

Acknowledgments

The authors would like to thank mental images GmbH for support and for
funding of this research. Jan Rzehak created the illustration in Figure 3.

12 Carsten Wächter and Alexander Keller

References

[Abr95] M. Abrash. BSP Trees. Dr. Dobbs Sourcebook, 20(14):49–52, 1995.
[Ben75] J. Bentley. Multidimensional Binary Search Trees used for Associative

Searching. Commun. ACM, 18(9):509–517, 1975.
[BNN+98] P. Bekaert, L. Neumann, A. Neumann, M. Sbert, and Y. Willems. Hi-

erarchical Monte Carlo Radiosity. Eurographics Rendering Workshop
1998, pages 259–268, June 1998.

[CP76] R. Cranley and T. Patterson. Randomization of number theoretic meth-
ods for multiple integration. SIAM Journal on Numerical Analysis,
13:904–914, 1976.

[DLT05] V. Demers, P. L’Écuyer, and B. Tuffin. A Combination of Randomized
quasi-Monte Carlo with Splitting for Rare-Event Simulation. In Pro-
ceedings of the 2005 European Simulation and Modelling Conference,
pages 25–32. SCS Press, 2005.

[DMC91] M. Dorigo, V. Maniezzo, and A. Colorni. Positive Feedback as a Search
Strategy. Technical Report 91016, Dipartimento di Elettronica e Infor-
matica, Politecnico di Milano, Italy, 1991.

[HLL07] R. El Haddad, C. Lécot, and P. L’Écuyer. Quasi-Monte Carlo Simulation
of Discrete-Time Markov Chains in Multidimensional State Spaces. In
A. Keller, S. Heinrich, and H. Niederreiter, editors, Monte Carlo and
Quasi-Monte Carlo Methods 2006, page in this volume. Springer, 2007.

[Kar72] R. Karp. Reducibility among Combinatorial Problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, Advances
in Computing Research, pages 85–103. Plenum Press, 1972.

[Kel06] A. Keller. Myths of Computer Graphics. In H. Niederreiter, editor,
Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 217–243.
Springer, 2006.

[KK86] T. Kay and J. Kajiya. Ray Tracing Complex Scenes. Computer Graphics
(Proceedings of SIGGRAPH 86), 20(4):269–278, August 1986.

[KK02a] T. Kollig and A. Keller. Efficient Bidirectional Path Tracing by Ran-
domized Quasi-Monte Carlo Integration. In H. Niederreiter, K. Fang,
and F. Hickernell, editors, Monte Carlo and Quasi-Monte Carlo Methods
2000, pages 290–305. Springer, 2002.

[KK02b] T. Kollig and A. Keller. Efficient Multidimensional Sampling. Computer
Graphics Forum, 21(3):557–563, September 2002.

[KK04] T. Kollig and A. Keller. Illumination in the Presence of Weak Sin-
gularities. In D. Talay and H. Niederreiter, editors, Monte Carlo and
Quasi-Monte Carlo Methods 2004, pages 245–257. Springer, 2004.

[KL99] F. El Khettabi and C. Lécot. Quasi-Monte Carlo Simulation of Diffusion.
J. Complexity, 15(3):342–359, 1999.

[Kol04] T. Kollig. Efficient Sampling and Robust Algorithms for Photorealistic
Image Synthesis. PhD thesis, University of Kaiserslautern, Germany,
2004.

[KS05] F. Kuo and I. Sloan. Quasi-Monte Carlo Methods can be efficient for
Integration over Products of Spheres. J. Complexity, 21(2):196–210,
2005.

[LC98] C. Lécot and I. Coulibaly. A quasi-Monte Carlo Scheme using Nets for a
linear Boltzmann Equation. SIAM J. Numer. Anal., 35(1):51–70, 1998.

Efficient Simultaneous Simulation of Markov Chains 13

[LDT06] P. L’Écuyer, V. Demers, and B. Tuffin. Splitting for Rare-Event Simu-
lation. In Proceedings of the 2006 Winter Simulation Conference, pages
137–148, 2006.

[LDT07] P. L’Écuyer, V. Demers, and B. Tuffin. Rare Events, Splitting, and
quasi-Monte Carlo. ACM Transactions on Modeling and Computer Sim-
ulation, 17(2): Art. No. 9, 2007.

[Léc89a] C. Lécot. A Direct Simulation Monte Carlo Scheme and Uniformly
Distributed Sequences for Solving the Boltzmann Equation. Computing,
41(1-2):41–57, 1989.

[Léc89b] C. Lécot. Low Discrepancy Sequences for solving the Boltzmann Equa-
tion. Journal of Computational and Applied Mathematics, 25(2):237–
249, 1989.

[Léc91] C. Lécot. A quasi-Monte Carlo Method for the Boltzmann Equation.
Mathematics of Computation, 56(194):621–644, 1991.

[LL02] P. L’Écuyer and C. Lemieux. Recent Advances in Randomized quasi-
Monte Carlo methods. In M. Dror, P. LEcuyer, and F. Szidarovszky,
editors, Modeling Uncertainty: An Examination of Stochastic Theory,
Methods, and Applications, pages 419–474. Kluwer Academic Publish-
ers, 2002.

[LLKS85] E. Lawler, J. Lenstra, A. Rinnooy Kan, and D. Shmoys. The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. John
Wiley, 1985.

[LLT05] P. L’Écuyer, C. Lécot, and B. Tuffin. A Randomized quasi-Monte Carlo
Simulation Method for Markov Chains. Technical report g-2006-64, to
appear in Operations Research, GERAD, Université de Montréal, 2005.

[LLT06] P. L’Écuyer, C. Lécot, and B. Tuffin. Randomized quasi-Monte Carlo
Simulation of Markov Chains with an Ordered State Space. In
H. Niederreiter and D. Talay, editors, Monte Carlo and quasi-Monte
Carlo Methods 2004, pages 331–342. Springer, 2006.

[LT04a] C. Lécot and B. Tuffin. Comparison of quasi-Monte Carlo-Based Meth-
ods for the Simulation of Markov Chains. Monte Carlo Methods and
Applications, 10(3-4):377–384, 2004.

[LT04b] C. Lécot and B. Tuffin. Quasi-Monte Carlo Methods for Estimating
Transient Measures of Discrete Time Markov Chains. In H. Niederre-
iter, editor, Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing 2002, pages 329–344. Springer, 2004.

[Mat98] J. Matoušek. On the L2-discrepancy for anchored boxes. J. Complexity,
14(4):527–556, 1998.

[MC93] W. Morokoff and R. Caflisch. A Quasi-Monte Carlo Approach to Particle
Simulation of the Heat Equation. SIAM Journal on Numerical Analysis,
30(6):1558–1573, 1993.

[Nie92] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo
Methods. SIAM, Philadelphia, 1992.

[Rei94] G. Reinelt. The Traveling Salesman - Computational Solutions for TSP
Applications. Springer, 1994.

[Rus98] D. Rusin. Topics on Sphere Distributions, http://www.math.
niu.edu/∼rusin/known-math/95/sphere.faq, 1998.

[RW80] S. Rubin and J. Whitted. A 3-dimensional representation for fast render-
ing of complex scenes. Computer Graphics (Proceedings of SIGGRAPH
80), 14(3):110–116, 1980.

14 Carsten Wächter and Alexander Keller

[Sag94] H. Sagan. Space-Filling Curves. Springer, 1994.
[SBGS69] R. Schumacker, R. Brand, M. Gilliland, and W. Sharp. Study for Apply-

ing Computer-Generated Images to Visual Simulation. Technical report
AFHRL-TR-69-14, U.S. Air Force Human Resources Laboratory, 1969.

[SC94] P. Shirley and K. Chiu. Notes on Adaptive Quadrature on the Hemi-
sphere. Technical Report TR-411, Dept. of Computer Science Indiana
University, 1994.

[Shi00] P. Shirley. Realistic Ray Tracing. AK Peters, Ltd., 2000.
[SKFNC97] L. Szirmay-Kalos, T. Fóris, L. Neumann, and B. Csébfalvi. An Analy-

sis of Quasi-Monte Carlo Integration Applied to the Transillumination
Radiosity Method. Computer Graphics Forum, 16(3):271–282, 1997.

[SM07] M. Saito and M. Matsumoto . SIMD-oriented Fast Mersenne Twister: A
128-bit Pseudorandom Number Generator. In A. Keller, S. Heinrich, and
H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods
2006. Springer, in this volume.

[Sob67] I. Sobol’. On the Distribution of Points in a Cube and the approximate
Evaluation of Integrals. Zh. vychisl. Mat. mat. Fiz., 7(4):784–802, 1967.

[Vea97] E. Veach. Robust Monte Carlo Methods for Light Transport Simulation.
PhD thesis, Stanford University, 1997.

[Wie03] J.-M. Wierum. Anwendung diskreter raumfüllender Kurven - Graphpar-
titionierung und Kontaktsuche in der Finite-Elemente-Simulation. PhD
thesis, Universität Paderborn, 2003.

[WK06] C. Wächter and A. Keller. Instant Ray Tracing: The Bounding Interval
Hierarchy. In T. Akenine-Möller and W. Heidrich, editors, Rendering
Techniques 2006 (Proc. of 17th Eurographics Symposium on Rendering),
pages 139–149, 2006.

[WK07] C. Wächter and A. Keller. Terminating Spatial Partition Hierarchies by
A Priori Bounding Memory. Technical report, Ulm University, 2007.

Efficient Simultaneous Simulation of Markov Chains 15

 0.1

 1

 100 1000

A
ve

ra
ge

 R
M

S
 E

rr
or

Chains

Monte Carlo
RQMC

 lo-dim RQMCS
 hi-dim RQMCS

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100 1000

V
ar

ia
nc

e

Chains

Monte Carlo
RQMC

 lo-dim RQMCS
 hi-dim RQMCS

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100 1000

P
ix

el
-b

as
ed

 V
ar

ia
nc

e

Chains

Monte Carlo
RQMC

 lo-dim RQMCS
 hi-dim RQMCS

a) Test scene ”Shirley 6”.

 1000

 10000

 100 1000

A
ve

ra
ge

 R
M

S
 E

rr
or

Chains

Monte Carlo
RQMC

 lo-dim RQMCS
 hi-dim RQMCS

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 100 1000

V
ar

ia
nc

e

Chains

Monte Carlo
RQMC

 lo-dim RQMCS
 hi-dim RQMCS

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 100 1000

P
ix

el
-b

as
ed

 V
ar

ia
nc

e

Chains

Monte Carlo
RQMC

 lo-dim RQMCS
 hi-dim RQMCS

b) Test scene ”Invisible date”.

Fig. 6. RMS error, global, and per pixel variance for an a) simple and b) more
complicated light transport setting.

16 Carsten Wächter and Alexander Keller

L1 per camera L2 per camera L1 per pixel L2 per pixel

Monte Carlo 0.0626524 0.02368870 0.202377 463.397
RQMC 0.0407531 0.00773514 0.162835 62.0994
RQMCS 0.0247592 0.00178907 0.138360 9.79994

Fig. 7. Schematic view of the labyrinth test scene, where floor and roof have been
removed for illustration. The camera is situated in the room at the bottom, while a
light source is located on the other end of the connecting tunnel. The graphs show
the Box-and-Whisker plots and the average amount (marked by ×) of the total
radiance received by the camera for 1048576 simulated light paths for 50 independent
realizations using each technique. The lower graph enlarges the interesting part of
the upper graph. The table finally displays the deviation from a master solution using
the L1- and L2-norm (variance) for the total radiance received by the camera and
received by each pixel (256×256 pixels resolution) averaged over the 50 independent
realizations. In this difficult setting the new method (RQMCS) is clearly superior.

