
Efficient Ray Tracing without Auxiliary Acceleration Data Structure

Alexander Keller∗

NVIDIA
Carsten Wächter†

NVIDIA

Figure 1: Instead of tracing single rays, a set of rays is intersected with a set of objects. The procedure first discards all the rays not
intersecting the bounding box of the objects. If a sufficient number of rays and objects remains, the set of objects will be partitioned and the
procedure will be applied recursively to the resulting sets of objects.

1 Light Transport Simulation by Ray Tracing

Light transport simulation consists of summing up the contribution
of all transport paths that connect cameras and light sources. The
vertices of such paths are identified by tracing straight rays, which
opposite to rasterization, allows for simulating physical reflection
and refraction, as well as arbitrary shadows and global illumination,
without approximation artifacts.

2 Implicit Bounding Volume Hierarchy

Simultaneously considering all rays and all objects results in a
divide-and-conquer algorithm. As illustrated in Figure 1, this Algo-
rithm 1 [Keller and Wächter 2008] first discards the rays not inter-
secting the bounding box of the objects. Upon a suitable termina-
tion criterion, for example if the numbers of active rays and objects
are sufficiently small, all active rays are intersected with all objects,
while the closest intersection is recorded with each ray. Otherwise
the objects are partitioned and the procedure is recursively called
for the resulting sets.

Computing the partition according to a heuristic, for example by
separating the objects along the middle of the longest side of their
bounding box, can be replaced by using a given partition, as for ex-
ample the one implied by a scene graph hierarchy. In addition, the
presence of bounding volumes of known extent enables the genera-
tion of objects on demand.

In fact the recursive procedure traverses a bounding volume hierar-
chy, which is never explicitly stored. This is useful, whenever ex-
plicitly computing and storing an auxiliary acceleration data struc-
ture cannot be amortized, for example, in order to augment ras-
terized images of dynamic scenes by reflections and refractions or
multiple shadows.

The efficiency of determining the active rays can be increased by
exploiting inherent structure, as for example rays originating from

∗e-mail: keller.alexander@gmail.com
†e-mail: toxie@ainc.de

Algorithm 1: Hierarchical intersection of rays and objects.
Intersect(Rays, Objects)
if Rays 6= ∅ and Objects 6= ∅ then

ActiveRays← {r ∈ Rays ∧ r ∩ BBox(Objects) 6= ∅} ;
if ActiveRays 6= ∅ then

if Terminate(ActiveRays, Objects) then
DirectlyIntersect(ActiveRays, Objects);

else
(Objects1, Objects2)← Partition(Objects);
Intersect(ActiveRays, Objects1);
Intersect(ActiveRays, Objects2);

end
end

end

a single point like the eye, the center of an environment map, a point
light, or ambient occlusion rays. This includes rasterization and the
Reyes architecture as special cases.

Local ray statistics can be used to determine partitions, the order of
recursion, and allow for selecting an appropriate level of detail.

Spatial partitioning can be realized by traversing the voxels of a
space partition hierarchy and determining the rays and objects in-
tersecting the current voxel in analogy to Algorithm 1.

As illustrated in Figure 1, processing is restricted to regions where
both rays and objects intersect. Furthermore, the algorithm takes
advantage of caches, because the working set becomes more lo-
calized with recursion depth, and intersections are enumerated by
spatial proximity.

References

KELLER, A., AND WÄCHTER, C. 2008. Efficient ray tracing
without acceleration data structure. Internal report, NVIDIA.


