
Terminating Spatial Hierarchies by A Priori
Bounding Memory

Carsten Wächter Alexander Keller

Technical Report
Ulm University, 2007

We consider the efficient top-down construction of spatial hierarchies for accel-
erating ray tracing and present a new termination criterion that allows for a priori
fixing the memory footprint of the data structure. The resulting simplification of mem-
ory management makes algorithms shorter, more efficient, and more widely applicable,
especially when considering hardware implementations and kd-trees. Even the on de-
mand construction of parts of the hierarchy becomes close to trivial. In addition it
proves to be the case that the hierarchy construction time easily can be predicted by
the size of the provided memory block. This in turn allows for automatically balancing
construction and ray tracing time in order to minimize the total time needed to render
a frame from scratch.

1 Introduction
Photorealistic image synthesis consists of connecting light sources and pixels by light
transport paths and summing up their contributions. Vertices along these transport
paths are found by tracing straight rays from one point of interaction to the next one.
But also many other direct simulation methods in scientific computing rely on tracing
particles along straight lines. Usually, a considerable part of the total computation time
is spent on ray tracing.

The time spent for tracing many rays can be dramatically shortened by constructing
an auxiliary acceleration data structure that allows for the efficient exclusion of large
portions of the scene to be intersected with the rays instead of intersecting each ray
with all objects in a scene.

We will focus on implementations of ray tracing as a backtracking algorithm that
searches trees or directed acyclic graphs, because these schemes adapt best to general
geometry. Constructing such a hierarchical data structure is easily formulated as a
recursive procedure whose construction time is amortized when tracing many rays.

The efficiency of the ray tracing algorithm heavily depends on how the search data
structures are built. Aside from various existing heuristics, memory management is an
issue. While hierarchically partitioning the list of objects [WK06, WMS06, WBS06]
allows one to predict the memory footprint, these techniques based on bounding vol-

1

umes can suffer from inefficiencies caused by large objects and the convexity of the
applied bounding volumes [WK06, Wal04, Sec.7.3.3]. Partitioning space [RSH00,
WIK+06, Wal04, Hav01, Ben06, Kel98, RSH05] ameliorates these problems, however,
objects now can be referenced multiple times as they may intersect multiple elements
of a spatial hierarchy and it had been infeasible to efficiently predict this multiplicity
and thus the memory footprint in a general way.

In the following we present a solution to the memory footprint prediction prob-
lem of spatial partition hierarchies, which in addition can avoid memory fragmentation
completely. This improvement applies to all previous approaches. Then we derive
a memory prediction heuristic, analyze the algorithm, and present numerical experi-
ments.

As we consider only the efficient construction of the acceleration data structure, we
will not treat its efficient traversal, which however is found in [Wal04] and [Ben06].
For the following we also assume familiarity with state of the art ray tracing technology
(see [Gla89, Shi00] for the roots of ray tracing).

2 Construction of Spatial Hierarchies
In order to present our new algorithm, we need to sketch the general recursive top-down
procedure to construct spatial hierarchies. The steps are the following:

Termination: The termination condition is a combination of controlling memory con-
sumption and considering the amortization of appending more nodes to the tree.
Usually one clause terminates the tree by depth, which only results in an ex-
ponential bound on the number of nodes and thus memory. Another common
clause avoids to further subdivide the tree if not enough references are provided.
This clause saves memory and balances node versus leaf processing time.

Split selection: A heuristic is used to split the current volume element into two or
more elements. Both the efficiency of the construction and the efficiency of ray
tracing later on are heavily influenced by how the split is selected. Heuristics
range from simple criteria as splitting axis-aligned volumes in the middle along
the longest side, over global criteria [WK06] to more costly methods like the sur-
face area heuristic (SAH) [GS87, Hav01, Wal04, WBS06]. Our new technique
works with any of these heuristics.

Classification: For each object referenced in the object list it is determined which of
the new volumes it intersects.

Node creation: For each new child a list of references to objects is assembled accord-
ing to the classification in the previous step. The case of concern now is the
reference replication caused by objects that are assigned to more than one child
as it is difficult to a priori predict their number.

Post-processing: After recursively processing the children, a post-processing step can
perform several tree optimizations. Examples are found in [Kel98, App. A] and
[Wal04].

2

2.1 Termination by Bounding Available Memory
In fact only two modifications of the previous procedure are sufficient to construct a
tree in an a priori fixed piece of memory.

First, we extend the argument list of the construction procedure by passing along a
contiguous block of memory along with its size. Instead of terminating the hier-
archy by controlling the maximum depth of the tree, a leaf node is constructed,
if the two reference lists resulting from the classification step plus the size of two
tree nodes do not fit into the given memory block.

Second, we predict the memory consumption of the two new sub-trees in the sorting
step and accordingly schedule the available memory to the two children when
continuing recursively. We therefore compute a prediction p ∈ [0,1], which
schedules the fraction of memory for the left child. The remainder of the mem-
ory is scheduled for the right child. Note that for branches with more than two
children we need a prediction pi ∈ [0,1] for each child i with the condition that
all pi sum up to one.

Contrary to the classical clause, which terminated the tree by one global depth param-
eter, the depth now is implicitly controlled by the scheduled memory. The scheduling
allows to locally adapt the depth, which is superior to the previous exponential bound.
Scheduling in addition replaces the second classical termination clause, which limited
the number of items worth a further tree subdivision. The same effect now can be ob-
tained by just providing a smaller memory block upon the initial call of the construction
procedure.

The procedure succeeds as long as there is at least sufficient memory to store one
node along with the list of references to all objects in the scene. This is a reasonable
assumption as exactly this data must be provided upon each procedure call anyhow.

The construction algorithm now can be implemented to run on limited memory and
in place (see the illustration for a binary tree in Figure 1). Instead of single memory al-
locations for nodes and lists, the memory management reduces to one block allocation
before the initial call of the construction routine.

Being able to fit a hierarchy into an a priori fixed memory footprint meets the
requirements of a hardware implementation, too, where a limited amount of on-board
memory is a fact.

2.2 Scheduling Available Memory by Prediction
In order to predict the ratios pi, we first take a look at bounding volume hierarchies
[WBS06, WK06, WMS06], which recursively partition the list of objects and thus lack
reference replication. Built to full depth, the number of inner nodes in the tree plus
one is equal to the total number of objects, which is true for any subtree, too. As a
consequence the relative frequency

pi =
ei

∑
m
j=1 e j

(1)

3

a) Upon procedure call

· · · object references free memory · · ·

↓ mb ↓ mb +n ↓ me

b) Indices during in-place sorting

· · · left unclass. free mem. left and ri. right · · ·

↓ mb ↓ mb + l ↓ mb +n ↓ mb + lr ↓ mb + r ↓ me

c) Creation of children

· · · 2 nodes mem. for left child mem. for right child · · ·

↓ mb ↓ m′b ↓ m′b + bp · (me−m′b)c ↓ me

d) Alternative memory layout in pre-order

· · · r r left subtree r right subtree · · ·

Figure 1: Illustration of a contiguous block of memory for a binary kd-tree. a) Upon a
call the construction procedure is provided the memory block starting at mb and ending
at me along with the number n of objects. b) In order to enable in-place sorting the array
is partitioned into regions for objects either on the left or right, or in both children, the
unclassified items to be processed, and the remaining free memory area. See the text
for the complete algorithm description. c) If children are created, the memory for two
nodes is taken from the provided memory block and the remainder starting at m′b is
scheduled for the two children according to the prediction p ∈ [0,1]. d) A memory
layout in pre-order improves cache performance, because less memory is accessed.

4

determined by the count ei of objects to be sorted into the i-th child of an m-ary node,
respectively, exactly predicts the fraction of memory to be scheduled for the i-th sub-
tree.

If the tree is not built to full depth, the prediction remains optimal in the sense that
all subtrees will receive memory proportional to their number of objects. This means
that all leafs will store about equal numbers of objects as they become about uniformly
pruned and subtrees containing more objects will be deeper. To summarize, our new
termination criterion along with proportional prediction allows one to build efficient
bounding volume hierarchies in a predetermined contiguous block of memory.

2.3 Prediction in the Presence of Reference Replication
There are situations where bounding volume hierarchies suffer from severe perfor-
mance penalties: For example these are encountered when bounding boxes of objects
expose big regions of overlap, when axis-aligned boxes are used to bound non-convex
objects, or when empty space cannot be separated as e.g. for diagonal pipes [Wal04,
Sec.7.3.3]. Then, instead of partitioning object lists, usually spatial partition schemes
are applied.

Considering hierarchies such as e.g. kd-trees [SS92, Kel98, Wal04, Ben06] that
potentially replicate references to objects that intersect splitting planes, we still can use
the prediction in equation (1) to schedule the memory for the children. This simple
prediction overcomes the static termination by tree depth as it does not just cut the
deepest branches of the tree but uniformly bounds memory proportional to the number
of references in a subtree as mentioned before.

2.3.1 Prediction Discrepancy

However, the prediction in equation (1) relies on local information only and cannot
predict the reference replication in the lower levels of the tree. Hence there may be a
discrepancy between the prediction and the optimal subtree memory footprint. As a
consequence some subtrees can be pruned by insufficient memory, while others cannot
use the scheduled memory. Although this effect vanishes as more memory becomes
available, it strongly implies that reference replication should be minimized by e.g.
preferring split planes aligned to the bounding boxes of the objects [HKRS02] in order
to allow for potentially deeper trees and consequently more efficient culling.

Our experiments indicate that performance degradations are hardly noticeable, which
is strongly supported by [WH06]: The O(nt lognt) behavior allows to draw the conclu-
sion that the observed average case reference replication is at most linear in the number
nt of objects, which is a perfect justification of the proportional heuristic.

However, from theory [MR95] a worst case behavior of O(n2
t) is known and thus,

although maybe rare, situations must exist, where the prediction will not work well:
The number of replicated references is proportional to the surface area of the object.
Long, thin objects will create references proportional to the length of their longest
side, while more extended objects will create references quadratic in the longest side.
As long as objects are small with respect to the total scene size, this effect will not be

5

noticeable as it happens only in some levels of the hierarchy. For a Mikado/Jackstraws-
game like scene, however, the effect will be quite noticeable.

Another situation where proportional prediction will fail locally is a prediction of
p = 0.5, where all objects sorted to the left are randomly placed, whereas the objects
on the right describe regular structures. While the right subtree will have minimal
reference replication the left one will have a lot, however, both subtrees were given
the same amount of memory. Situations like this are not theoretical: Trees around a
building are a setting, where locally the prediction can be non-optimal.

Many obvious ideas for improving the prediction will not work: For example
scheduling memory proportional to surface area or volume will dramatically fail, be-
cause identical measures will schedule identical memory for the branches, although
their number of objects may differ vastly. Note that this is independent of how the
splits are selected (see Section 2). Solutions to this problem must aim at predicting the
reference replication much higher in the hierarchy than they actually happen. The op-
timal prediction can be found by iterating the hierarchy construction: The replication
counts from a previous tree can be used to predict the memory for the next tree. This
approach is especially promising for animations of deformable objects, where only
geometry is transformed.

3 Complexity Analysis and Memory Footprint
The construction procedure coincides with a quicksort. While it is easy to see that find-
ing the pivot element in fact corresponds to selecting a splitting plane, it is rather un-
conventional that some elements are generated by reference replication during sorting.
However, their maximum number is bounded by the a priori fixed memory footprint.

The analysis of the quicksort algorithm is readily available in standard textbooks
on algorithms and data structures and states an average O(n logn) running time in
the number of n of object references to be sorted. This matches the observations in
[WH06]. The actual running time depends on how the split is selected and on how the
references are ordered. Of course there exist geometric configurations which violate
the assumptions of [WH06] and cause the worst case running time of O(n2) as can be
seen in the initial segment behavior of the graphs documented in [WH06]. This is in
accordance with the theoretical results in [MR95].

The question is now how to choose the size n of the memory footprint. It must be
sufficiently large to store at least one node along with all object references. But there
are more choices and considerations:

1. Providing memory n = α · nt proportional to the number of objects to be ray
traced is more reasonable. The factor α > 1 then represents the amount of al-
lowed reference replication (see also Figure 2). This is the most practical choice
and was actually motivated by the findings in [WH06], because an O(n logn)
quicksort can only touch O(n) memory.

2. Choosing n = β · nr proportional to the number nr of rays to be shot, which in
some path tracing algorithms is proportional to the number of pixels, exposes an
interesting relation to the classical Z-buffer: The memory footprint is linear in

6

the number of pixels, however, only if the memory required to store the scene
objects does not exceed this limit. As will be illustrated in the Section 5 on
numerical experiments (see also Figure 3), we thus are able to amortize the hier-
archy construction time by controlling it by the number of rays shot. An extreme
example is a single ray, where no hierarchy needs to be built and the triangles
are just tested in linear order.

3. Providing the maximum available memory reduces the risk of penalties from
bad memory predictions. However, building the tree adaptively then can result
in subtrees incoherently scattered over the whole memory block. Even worse,
the construction of kd-tree can fill arbitrary amounts of memory due to reference
replication. Consequently this last option is a bad choice.

Besides these obvious sizes and combinations thereof, we are convinced that there
exist other useful methods. Note that ray tracing complexity is not only determined
by the cost of constructing hierarchy; in fact the complexity later on is ruled by the
backtracking search, as indicated by the second item of the above enumeration. The
parameters α and β can be used to adjust the amortization (see Section 5).

4 Implementation
The new concept is easily verified by just implementing the termination condition us-
ing any existing implementation at hand. Although the memory allocation remains
untouched, the memory footprint implicitly becomes controlled by the termination cri-
terion.

A more efficient implementation still follows the outline of Sections 2 and 2.1,
however, memory management can be simplified: Before calling the construction rou-
tine a memory block is allocated in which a root node along with the object references
is stored in sequential order (similar to Figure 1a). Inside the routine the classification
uses the memory layout as illustrated in Figure 1b: For the next unclassified object we
decide, whether it belongs to the left, right, or both children in the subtree. The first
case just requires to increment the l variable. For the second case the last element of
the left-and-right block is moved to the front to make space for the new element on
the right. In addition the last unclassified element is moved to the vacancy left by the
element classified right. The last case requires to replicate a reference: The current
element is moved to the front of the left-and-right-block and again the last unclassified
element needs to be moved to the just created vacant memory position. If not enough
memory is available for replication, the routine has to create a leaf node by copying
back the right block and left-and-right block.

The creation of the children will only be performed, if there was sufficient memory
for two nodes and the total number of references including the replicated ones. Ac-
cording to the memory layout in Figure 1c, some elements from the left list have to
be moved to its end to make space for the nodes and the left-and-right block has to be
copied to the end of the left list. Based on the classification we can use the propor-
tional heuristic in equation (1) to compute the offset m′b + bp · (me−m′b)c of memory

7

scheduled for the right subtree. Then the memory block of the left-and-right with the
only-right items has to be moved to this offset.

Using this memory layout, the optimization of sharing the left-and-right block in
leaf nodes [Kel98, App. A] comes in handy and allows one more level in the tree
without the cost of additional memory.

While the above description considered kd-tree construction, it applies as well to
bounding volume hierarchies by just omitting the part that allows for reference repli-
cation. It is obvious, too, how to generalize the algorithm for m-ary trees.

Taking a closer look reveals memory fragmentation, unless the memory scheduled
for a subtree is completely used. This is trivially avoided by recognizing the prediction
p as an upper bound on the memory scheduled to the left child and just linearly writing
the tree data structure into the memory. This in addition increases data coherency which
is beneficial with modern processor cache architectures.

Proceeding that way may seem unfair, as the rightmost branch potentially receives
the most memory, however, this can be compensated by modifying p. A simple im-
provement is to change the order, in which the children are built recursively. This can
be done randomly or by changing the order if the tree depth is odd.

4.1 Alternative Memory Layout
The classic technique of storing the children as an array (see Figure 1c) allows one
to use only one pointer. Storing the tree in pre-order (see Figure 1d) allows one to
save memory: A pointer followed by its subtree points to the next subtree [Smi98,
GM03]. While leaf nodes are directly followed by references to objects or the objects
themselves, an inner node is followed by e.g. the splitting plane offset. This saves one
level of indirections and results in more cache coherent memory access, but did not not
perform noticeably different from the classic layout. In addition it does not allow for
the last level optimization possible in kd-trees (see Section 2).

Especially for a hardware design it would be beneficial to have two separate mem-
ory areas with each a separate memory controller for the inner and leaf nodes, respec-
tively. The ray tracing implementation in the Intel Performance Primitives uses such
a layout: First the tree nodes are enumerated, which are followed by the object ref-
erences. With our algorithm it is also possible to schedule a chunk of nodes in order
to increase cache performance. Ideally this would be in van der Emde Boas layout,
however, a penalty is paid if nodes remain empty.

4.2 Applied Split Plane Heuristics
As now both approaches of partitioning space (e.g. kd-trees) and partitioning object
lists (e.g. bounding volume hierarchies) fit a unified framework, it becomes straight-
forward to use a hybrid approach to optimize performance. The split selection then
tries to first divide the list of objects unless this is inefficient and reference replica-
tion by spatial partition becomes unavoidable. The corresponding ray traversal must
distinguish between nodes with and without reference replication.

In anticipation of that step and with the data layout in Figure 1b, bounding volume
hierarchies in this paper are built by first sorting all objects that overlap a potential split-

8

ting plane into the left-and-right block. After scanning all objects, it is decided whether
all objects in that block are appended to either the left or right block. Compared to sin-
gle decisions for each object as described in [WK06] the overlap is minimized much
more. Consequently empty volume is maximized and in turn the overall performance
improves.

4.3 Massive Scenes
When a scene description does not fit into main memory, we just can rely on virtual
memory mechanisms of the operating system to manage the memory block [WDS04].
In order to reduce page thrashing, the upper part of the inner nodes of the spatial hi-
erarchy can be stored in a part of memory that permanently remains in main memory
[WSBW01, DH05, WK06].

We also considered two separate memory blocks for the upper part and lower parts
of the hierarchy. The new termination criterion can efficiently fit the upper part of
a hierarchy into the a priori fixed first memory block. The lower parts are built on
demand in the second block of memory. The least recently used parts of the hierarchy
become flushed, if memory is not sufficient. This procedure then somewhat resembles
multi-pass algorithms on rasterization hardware.

4.4 Construction on Demand
Instead of recursively constructing the whole hierarchy in advance, the hierarchy can be
built on demand during ray traversal. Therefore nodes are checked for being finalized
upon visit. If they are not finalized the construction procedure is called that either
finalizes the current subtree or appends one level of nodes. Therefore non-finalized
nodes have to store the temporary information necessary to proceed the construction
procedure upon the next visit. If the scheduled free memory does not allow to store
this information, the recursive construction routine is called to build the subtree fitting
in that memory block.

While the implementation is rather simple and elegant, it only saves computation
time, but leaves unused memory regions, as the memory block is allocated once before.

5 Numerical Experiments and Results
It is important to note that our termination criterion is not a new algorithm to build
hierarchies, it is much more a way to efficiently control memory consumption. Also
note that providing sufficient memory results in hierarchies identical to the ones built
using the classic criteria.

We verified the new termination criterion using the kd-tree and the bounding in-
terval hierarchy (BIH, [WK06]) as they are amongst the currently most competitive
hierarchies. Measurements were done using one processor core on a Core2Duo Laptop
running at 1.66GHz.

For the first set of numerical experiments three scenes have been used: A car scene
represents a currently very attractive domain for ray tracing, a kitchen that has a mix-

9

 100

 1e+007

M
ill

is
ec

on
ds

 to
 T

ra
ce

 a
nd

 S
ha

de
 5

12
x5

12
 R

ay
s

Memory in Bytes

SAH kD
SAH BIH

kD
BIH

 1000

 10000

 1e+007

C
on

st
ru

ct
io

n
T

im
e

in
 M

ill
is

ec
on

ds

Memory in Bytes

SAH kD
SAH BIH

kD
BIH

Stanford Happy Buddha, nt = 1.087.716 triangles.

 100

 1000

 1e+006 1e+007

M
ill

is
ec

on
ds

 to
 T

ra
ce

 a
nd

 S
ha

de
 5

12
x5

12
 R

ay
s

Memory in Bytes

SAH kD
SAH BIH

kD
BIH

 100

 1000

 10000

 1e+006 1e+007

C
on

st
ru

ct
io

n
T

im
e

in
 M

ill
is

ec
on

ds

Memory in Bytes

SAH kD
SAH BIH

kD
BIH

TBP Kitchen, nt = 181.755 triangles.

 100

 1000

 1e+007

M
ill

is
ec

on
ds

 to
 T

ra
ce

 a
nd

 S
ha

de
 5

12
x5

12
 R

ay
s

Memory in Bytes

SAH kD
SAH BIH

kD
BIH

 1000

 1e+007

C
on

st
ru

ct
io

n
T

im
e

in
 M

ill
is

ec
on

ds

Memory in Bytes

SAH kD
SAH BIH

kD
BIH

Car 1, nt = 312.888 triangles.

Figure 2: The graphs illustrate the asymptotic behavior of our new termination cri-
terion. For each of the three test scenes the memory ranges from α = 5 . . .64 bytes
times the number nt of triangles. The left graph shows how the ray tracing time (ex-
cluding construction time) for rendering 512× 512 pixel images depends on the size
of the memory available for the acceleration data structure. As expected an exponen-
tial decay is observed. The right graph shows how limiting the memory first behaves
linear in the number of triangles and as the trees become deeper asymptotically blends
to an O(n logn) complexity. Since the bounding interval hierarchy (BIH) construction
does not replicate references, the BIH curves become clipped once the tree is built to
the maximally possible depth. Note that using the SAH efficiently requires additional
memory linear in the number nt of triangles, whereas the graphs only consider the
memory used for the actual acceleration data structure.

10

ture of small and big partially overlapping triangles, and the Stanford Happy Buddha as
a very simple scene. For our measurements we applied four split plane heuristics: The
kd-trees were built by splitting through the vertex nearest to the middle of the longest
axis of the axis-aligned voxel and by an SAH approximation using 20 candidates on
each axis [SSK07]. The bounding interval hierarchies (BIH) were using the global
heuristic as described in [WK06] including the refinement from Section 4.2 as well
as the full SAH [WH06]. The BIH SAH implementation variant requires additional
precomputation time and memory for the presorted lists (16 bytes times the number of
triangles in the scene) to achieve O(n logn) running time. Yet, the additional memory
consumption is omitted in the graphs, otherwise all BIH SAH plots must be thought
of shifted to the right. In Figure 2 we illustrate the behavior of our new termination
criterion on the size of the provided memory block. Providing more memory the hi-
erarchies can be built deeper and as expected the time spent for ray tracing decreases.
Looking precisely, it can be seen that for the Buddha ray traced with a kd-tree too much
memory allows for too deep trees that in turn become inefficient. The construction time
asymptotically behaves like O(n logn) on the average. The beginning segments of the
construction time curve, however, are linear in the number of triangles as not enough
memory is provided to build deep hierarchies. Contrary to the kd-trees the BIH curves
are clipped, because no reference replication is possible.

In the second set of experiments we used the Stanford Thai statue to investigate
how the construction time can be amortized over rendering time, i.e. how the total time
needed to render a frame from scratch can be minimized. From Figure 3 it becomes
obvious that this minimum depends on both the number of rays and the memory block
provided. In other words: The quality of the hierarchy needs to be traded for its con-
struction time. While the ”valley” of the minimum is clearly visible for the kd-tree in
Figure 3, it is less distinct for the BIH (although similar), because the BIH can be con-
structed much faster due to the lack of checks for reference replication. The shape of
the graphs in Figure 3 is easily explained: With increasing resolution first the construc-
tion time dominates before the ray tracing time takes over. The more rays are shot the
deeper, i.e. better, hierarchies pay off. This depth is controlled by the new termination
criterion and thus by the size of the available memory.

The above observation together with our new termination criterion is especially
useful in a dynamic setting, where each frame must be computed from scratch. Here
the frame rate is easily maximized by measuring the total time to image and then in-
creasing or decreasing the size of the provided memory block from frame to frame.
This allows for automatically determining a close to optimal memory block size for
offline animation rendering, too.

6 Conclusion
We introduced a new termination criterion and memory scheduling heuristic that allows
one to construct an efficient ray tracing acceleration data structure in an a priori fixed
memory block. The resulting simplified memory management is beneficial for both
software and especially hardware implementations.

Although we gave strong arguments for the proportional memory scheduling heuris-

11

tic, still other heuristics could be developed and explored. The principle to terminate
hierarchies by memory consumption applies to other ray tracing acceleration schemes,
too, as for example hierarchical grids [WIK+06, JW89, CDP95, KS97], octrees, or
even ray classification [AK87]. It is straightforward to apply the scheme to classic
BSP trees (see e.g. [FvDFH96] or current games) in order to determine visibility and
to point clouds (e.g. photon mapping [Jen01]) for faster range searching. Finally it is
interesting to explore the new scheme in the field of collision detection and occlusion
culling with graphics hardware.

Acknowledgements

The authors would like to thank mental images GmbH for support and for funding of
this research. Special thanks go to Manuel Finckh and Johannes Hanika for their quick
help with the SAH measurements.

References
[AK87] J. Arvo and D. Kirk, Fast Ray Tracing by Ray Classification, Computer

Graphics (Proc. SIGGRAPH 1987) 21 (1987), no. 4, 55–64.

[Ben06] C. Benthin, Realtime Ray Tracing on current CPU Architectures, Ph.D.
thesis, Saarland University, 2006.

[CDP95] F. Cazals, G. Drettakis, and C. Puech, Filtering, Clustering and Hier-
archy Construction: a New Solution for Ray-Tracing Complex Scenes,
Computer Graphics Forum (Proc. Eurographics 1995) 14 (1995), no. 3,
371–382.

[DH05] T. Driemeyer and R. Herken (eds.), Programming mental ray, 3rd ed.,
Springer, 2005.

[FvDFH96] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics, Prin-
ciples and Practice, 2nd Edition in C, Addison-Wesley, 1996.

[Gla89] A. Glassner, An Introduction to Ray Tracing, Academic Press, 1989.

[GM03] M. Geimer and S. Müller, A Cross-Platform Framework for Interactive
Ray Tracing, Tagungsband Graphiktag der Gesellschaft für Informatik
(2003), 25–34.

[GS87] J. Goldsmith and J. Salmon, Automatic Creation of Object Hierarchies for
Ray Tracing, IEEE Computer Graphics & Applications 7 (1987), no. 5,
14–20.

[Hav01] V. Havran, Heuristic Ray Shooting Algorithms, Ph.D. thesis, Czech Tech-
nical University, Praha, Czech Republic, 2001.

[HKRS02] J. Hurley, R. Kapustin, A. Reshetov, and A. Soupikov, Fast Ray Tracing
for Modern General Purpose CPU, Proc. Graphicon, 2002, pp. 255–261.

12

[Jen01] H. Jensen, Realistic Image Synthesis Using Photon Mapping, AK Peters,
2001.

[JW89] D. Jevans and B. Wyvill, Adaptive Voxel Subdivision for Ray Tracing,
Proc. Graphics Interface, 1989, pp. 164–172.

[Kel98] A. Keller, Quasi-Monte Carlo Methods for Photorealistic Image Synthe-
sis, Ph.D. thesis, University of Kaiserslautern, Germany, 1998.

[KS97] K. Klimaszewski and T. Sederberg, Faster Ray Tracing Using Adaptive
Grids, IEEE Computer Graphics & Applications 17 (1997), no. 1, 42–51.

[MR95] M. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Uni-
versity Press, 1995.

[RSH00] E. Reinhard, B. Smits, and C. Hansen, Dynamic Acceleration Structures
for Interactive Ray Tracing, Proc. 11th Eurographics Workshop on Ren-
dering, 2000, pp. 299–306.

[RSH05] A. Reshetov, A. Soupikov, and J. Hurley, Multi-Level Ray Tracing Al-
gorithm, ACM Transactions on Graphics (Proc. SIGGRAPH 2005) 24
(2005), no. 3, 1176–1185.

[Shi00] P. Shirley, Realistic Ray Tracing, AK Peters, Ltd., 2000.

[Smi98] B. Smits, Efficiency Issues for Ray Tracing, Journal of Graphics Tools 3
(1998), no. 2, 1–14.

[SS92] K. Sung and P. Shirley, Ray Tracing with the BSP-tree, Graphics Gems
III (D. Kirk, ed.), Academic Press, 1992, pp. 271–274.

[SSK07] M. Shevtsov, A. Soupikov, and A. Kapustin, Highly Parallel Fast KD-tree
Construction for Interactive Ray Tracing of Dynamic Scenes, Computer
Graphics Forum (Proc. Eurographics 2007) 26 (2007), no. 3, to appear.

[Wal04] I. Wald, Realtime Ray Tracing and Interactive Global Illumination, Ph.D.
thesis, Saarland University, 2004.

[WBS06] I. Wald, S. Boulos, and P. Shirley, Ray Tracing Deformable Scenes using
Dynamic Bounding Volume Hierarchies, ACM Transactions on Graphics
26 (2006), no. 1.

[WDS04] I. Wald, A. Dietrich, and P. Slusallek, An Interactive Out-of-Core Ren-
dering Framework for Visualizing Massively Complex Models, Rendering
Techniques 2004 (Proc. 15th Eurographics Symposium on Rendering),
2004, pp. 81–92.

[WH06] I. Wald and V. Havran, On building fast kD-trees for Ray Tracing, and
on doing that in O(N log N), Proc. 2006 IEEE Symposium on Interactive
Ray Tracing, September 2006, pp. 61–69.

13

[WIK+06] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. Parker, Ray Tracing Animated
Scenes using Coherent Grid Traversal, ACM Transactions on Graphics
(Proc. SIGGRAPH 2006) (2006), 485–493.

[WK06] C. Wächter and A. Keller, Instant Ray Tracing: The Bounding Interval
Hierarchy, Rendering Techniques 2006 (Proc. 17th Eurographics Sym-
posium on Rendering) (T. Akenine-Möller and W. Heidrich, eds.), 2006,
pp. 139–149.

[WMS06] S. Woop, G. Marmitt, and P. Slusallek, B-KD Trees for Hardware Accel-
erated Ray Tracing of Dynamic Scenes, Proc. Graphics Hardware, 2006,
pp. 67–77.

[WSBW01] I. Wald, P. Slusallek, C. Benthin, and M. Wagner, Interactive Distributed
Ray Tracing of Highly Complex Models, Rendering Techniques 2001
(Proc. 12th Eurographics Workshop on Rendering), 2001, pp. 277–288.

14

 5e+007
 1e+008

 1.5e+008
 2e+008

 2.5e+008
 3e+008

 100000
 200000

 300000
 400000

 500000
 600000

 700000
 800000

 900000
 1e+006

 10000

 15000

 20000

 25000

Time (ms)
Thai Statue kD

Memory in Bytes

Rays

Time (ms)

 5e+007
 1e+008

 1.5e+008
 2e+008

 2.5e+008
 3e+008

 100000
 200000

 300000
 400000

 500000
 600000

 700000
 800000

 900000
 1e+006

 10000

 15000

 20000

 25000

Time (ms)
Thai Statue BIH

Memory in Bytes

Rays

Time (ms)

Figure 3: Illustration of the total time to image in dependence on the provided memory
size and number of rays (2562 . . .10242) for the Stanford Thai Statue (nt = 10.000.000
triangles). For both approaches the minimal time clearly depends on both the number
of rays and provided memory.

15

